Exit Full View

Games Cupboard / build / js / node_modules / node-forge / lib / rc2.js

/**
 * RC2 implementation.
 *
 * @author Stefan Siegl
 *
 * Copyright (c) 2012 Stefan Siegl <stesie@brokenpipe.de>
 *
 * Information on the RC2 cipher is available from RFC #2268,
 * http://www.ietf.org/rfc/rfc2268.txt
 */
var forge = require('./forge');
require('./util');

var piTable = [
  0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d,
  0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2,
  0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
  0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82,
  0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc,
  0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
  0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03,
  0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7,
  0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
  0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec,
  0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39,
  0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
  0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9,
  0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9,
  0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
  0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad
];

var s = [1, 2, 3, 5];

/**
 * Rotate a word left by given number of bits.
 *
 * Bits that are shifted out on the left are put back in on the right
 * hand side.
 *
 * @param word The word to shift left.
 * @param bits The number of bits to shift by.
 * @return The rotated word.
 */
var rol = function(word, bits) {
  return ((word << bits) & 0xffff) | ((word & 0xffff) >> (16 - bits));
};

/**
 * Rotate a word right by given number of bits.
 *
 * Bits that are shifted out on the right are put back in on the left
 * hand side.
 *
 * @param word The word to shift right.
 * @param bits The number of bits to shift by.
 * @return The rotated word.
 */
var ror = function(word, bits) {
  return ((word & 0xffff) >> bits) | ((word << (16 - bits)) & 0xffff);
};

/* RC2 API */
module.exports = forge.rc2 = forge.rc2 || {};

/**
 * Perform RC2 key expansion as per RFC #2268, section 2.
 *
 * @param key variable-length user key (between 1 and 128 bytes)
 * @param effKeyBits number of effective key bits (default: 128)
 * @return the expanded RC2 key (ByteBuffer of 128 bytes)
 */
forge.rc2.expandKey = function(key, effKeyBits) {
  if(typeof key === 'string') {
    key = forge.util.createBuffer(key);
  }
  effKeyBits = effKeyBits || 128;

  /* introduce variables that match the names used in RFC #2268 */
  var L = key;
  var T = key.length();
  var T1 = effKeyBits;
  var T8 = Math.ceil(T1 / 8);
  var TM = 0xff >> (T1 & 0x07);
  var i;

  for(i = T; i < 128; i++) {
    L.putByte(piTable[(L.at(i - 1) + L.at(i - T)) & 0xff]);
  }

  L.setAt(128 - T8, piTable[L.at(128 - T8) & TM]);

  for(i = 127 - T8; i >= 0; i--) {
    L.setAt(i, piTable[L.at(i + 1) ^ L.at(i + T8)]);
  }

  return L;
};

/**
 * Creates a RC2 cipher object.
 *
 * @param key the symmetric key to use (as base for key generation).
 * @param bits the number of effective key bits.
 * @param encrypt false for decryption, true for encryption.
 *
 * @return the cipher.
 */
var createCipher = function(key, bits, encrypt) {
  var _finish = false, _input = null, _output = null, _iv = null;
  var mixRound, mashRound;
  var i, j, K = [];

  /* Expand key and fill into K[] Array */
  key = forge.rc2.expandKey(key, bits);
  for(i = 0; i < 64; i++) {
    K.push(key.getInt16Le());
  }

  if(encrypt) {
    /**
     * Perform one mixing round "in place".
     *
     * @param R Array of four words to perform mixing on.
     */
    mixRound = function(R) {
      for(i = 0; i < 4; i++) {
        R[i] += K[j] + (R[(i + 3) % 4] & R[(i + 2) % 4]) +
          ((~R[(i + 3) % 4]) & R[(i + 1) % 4]);
        R[i] = rol(R[i], s[i]);
        j++;
      }
    };

    /**
     * Perform one mashing round "in place".
     *
     * @param R Array of four words to perform mashing on.
     */
    mashRound = function(R) {
      for(i = 0; i < 4; i++) {
        R[i] += K[R[(i + 3) % 4] & 63];
      }
    };
  } else {
    /**
     * Perform one r-mixing round "in place".
     *
     * @param R Array of four words to perform mixing on.
     */
    mixRound = function(R) {
      for(i = 3; i >= 0; i--) {
        R[i] = ror(R[i], s[i]);
        R[i] -= K[j] + (R[(i + 3) % 4] & R[(i + 2) % 4]) +
          ((~R[(i + 3) % 4]) & R[(i + 1) % 4]);
        j--;
      }
    };

    /**
     * Perform one r-mashing round "in place".
     *
     * @param R Array of four words to perform mashing on.
     */
    mashRound = function(R) {
      for(i = 3; i >= 0; i--) {
        R[i] -= K[R[(i + 3) % 4] & 63];
      }
    };
  }

  /**
   * Run the specified cipher execution plan.
   *
   * This function takes four words from the input buffer, applies the IV on
   * it (if requested) and runs the provided execution plan.
   *
   * The plan must be put together in form of a array of arrays.  Where the
   * outer one is simply a list of steps to perform and the inner one needs
   * to have two elements: the first one telling how many rounds to perform,
   * the second one telling what to do (i.e. the function to call).
   *
   * @param {Array} plan The plan to execute.
   */
  var runPlan = function(plan) {
    var R = [];

    /* Get data from input buffer and fill the four words into R */
    for(i = 0; i < 4; i++) {
      var val = _input.getInt16Le();

      if(_iv !== null) {
        if(encrypt) {
          /* We're encrypting, apply the IV first. */
          val ^= _iv.getInt16Le();
        } else {
          /* We're decryption, keep cipher text for next block. */
          _iv.putInt16Le(val);
        }
      }

      R.push(val & 0xffff);
    }

    /* Reset global "j" variable as per spec. */
    j = encrypt ? 0 : 63;

    /* Run execution plan. */
    for(var ptr = 0; ptr < plan.length; ptr++) {
      for(var ctr = 0; ctr < plan[ptr][0]; ctr++) {
        plan[ptr][1](R);
      }
    }

    /* Write back result to output buffer. */
    for(i = 0; i < 4; i++) {
      if(_iv !== null) {
        if(encrypt) {
          /* We're encrypting in CBC-mode, feed back encrypted bytes into
             IV buffer to carry it forward to next block. */
          _iv.putInt16Le(R[i]);
        } else {
          R[i] ^= _iv.getInt16Le();
        }
      }

      _output.putInt16Le(R[i]);
    }
  };

  /* Create cipher object */
  var cipher = null;
  cipher = {
    /**
     * Starts or restarts the encryption or decryption process, whichever
     * was previously configured.
     *
     * To use the cipher in CBC mode, iv may be given either as a string
     * of bytes, or as a byte buffer.  For ECB mode, give null as iv.
     *
     * @param iv the initialization vector to use, null for ECB mode.
     * @param output the output the buffer to write to, null to create one.
     */
    start: function(iv, output) {
      if(iv) {
        /* CBC mode */
        if(typeof iv === 'string') {
          iv = forge.util.createBuffer(iv);
        }
      }

      _finish = false;
      _input = forge.util.createBuffer();
      _output = output || new forge.util.createBuffer();
      _iv = iv;

      cipher.output = _output;
    },

    /**
     * Updates the next block.
     *
     * @param input the buffer to read from.
     */
    update: function(input) {
      if(!_finish) {
        // not finishing, so fill the input buffer with more input
        _input.putBuffer(input);
      }

      while(_input.length() >= 8) {
        runPlan([
            [ 5, mixRound ],
            [ 1, mashRound ],
            [ 6, mixRound ],
            [ 1, mashRound ],
            [ 5, mixRound ]
          ]);
      }
    },

    /**
     * Finishes encrypting or decrypting.
     *
     * @param pad a padding function to use, null for PKCS#7 padding,
     *           signature(blockSize, buffer, decrypt).
     *
     * @return true if successful, false on error.
     */
    finish: function(pad) {
      var rval = true;

      if(encrypt) {
        if(pad) {
          rval = pad(8, _input, !encrypt);
        } else {
          // add PKCS#7 padding to block (each pad byte is the
          // value of the number of pad bytes)
          var padding = (_input.length() === 8) ? 8 : (8 - _input.length());
          _input.fillWithByte(padding, padding);
        }
      }

      if(rval) {
        // do final update
        _finish = true;
        cipher.update();
      }

      if(!encrypt) {
        // check for error: input data not a multiple of block size
        rval = (_input.length() === 0);
        if(rval) {
          if(pad) {
            rval = pad(8, _output, !encrypt);
          } else {
            // ensure padding byte count is valid
            var len = _output.length();
            var count = _output.at(len - 1);

            if(count > len) {
              rval = false;
            } else {
              // trim off padding bytes
              _output.truncate(count);
            }
          }
        }
      }

      return rval;
    }
  };

  return cipher;
};

/**
 * Creates an RC2 cipher object to encrypt data in ECB or CBC mode using the
 * given symmetric key. The output will be stored in the 'output' member
 * of the returned cipher.
 *
 * The key and iv may be given as a string of bytes or a byte buffer.
 * The cipher is initialized to use 128 effective key bits.
 *
 * @param key the symmetric key to use.
 * @param iv the initialization vector to use.
 * @param output the buffer to write to, null to create one.
 *
 * @return the cipher.
 */
forge.rc2.startEncrypting = function(key, iv, output) {
  var cipher = forge.rc2.createEncryptionCipher(key, 128);
  cipher.start(iv, output);
  return cipher;
};

/**
 * Creates an RC2 cipher object to encrypt data in ECB or CBC mode using the
 * given symmetric key.
 *
 * The key may be given as a string of bytes or a byte buffer.
 *
 * To start encrypting call start() on the cipher with an iv and optional
 * output buffer.
 *
 * @param key the symmetric key to use.
 *
 * @return the cipher.
 */
forge.rc2.createEncryptionCipher = function(key, bits) {
  return createCipher(key, bits, true);
};

/**
 * Creates an RC2 cipher object to decrypt data in ECB or CBC mode using the
 * given symmetric key. The output will be stored in the 'output' member
 * of the returned cipher.
 *
 * The key and iv may be given as a string of bytes or a byte buffer.
 * The cipher is initialized to use 128 effective key bits.
 *
 * @param key the symmetric key to use.
 * @param iv the initialization vector to use.
 * @param output the buffer to write to, null to create one.
 *
 * @return the cipher.
 */
forge.rc2.startDecrypting = function(key, iv, output) {
  var cipher = forge.rc2.createDecryptionCipher(key, 128);
  cipher.start(iv, output);
  return cipher;
};

/**
 * Creates an RC2 cipher object to decrypt data in ECB or CBC mode using the
 * given symmetric key.
 *
 * The key may be given as a string of bytes or a byte buffer.
 *
 * To start decrypting call start() on the cipher with an iv and optional
 * output buffer.
 *
 * @param key the symmetric key to use.
 *
 * @return the cipher.
 */
forge.rc2.createDecryptionCipher = function(key, bits) {
  return createCipher(key, bits, false);
};